Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin.
نویسندگان
چکیده
Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.
منابع مشابه
The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors.
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabi...
متن کاملThe Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors C W OA
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabi...
متن کاملMEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis.
The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to func...
متن کاملThe Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA
The Mediator complex is at the core of transcriptional regulation and plays a central role in plant immunity. The MEDIATOR25 (MED25) subunit of Arabidopsis thaliana regulates jasmonate-dependent resistance to Botrytis cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor of jasmonate signaling, MYC2. Another Mediator subunit, MED8, acts independently or togethe...
متن کاملControl of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana.
Control of organ size by cell proliferation and cell expansion is a fundamental developmental process, but the mechanisms that establish the final size of organs and whole organisms remain elusive in plants and animals. We have previously demonstrated that DA1, which encodes a predicted ubiquitin receptor, controls the final size of seeds and organs by restricting cell proliferation in Arabidop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 42 شماره
صفحات -
تاریخ انتشار 2017